HVTN P5 Vaccine Trials

Erica Andersen-Nissen, PhD
Director, Cape Town HVTN Immunology Laboratory
“Considerations for a Pan-African HIV Vaccine Development Agenda”
Kigali, Rwanda
16-17 March 2015
To fully characterize the safety, immunogenicity, and efficacy of HIV vaccine candidates with the goal of developing a safe, effective vaccine as rapidly as possible for prevention of HIV infections globally.
Building and Expanding on the Results of RV144 in Southern Africa

- Phase 3 program: RV144 regimen
- Correlates program: other promising vaccine regimens
 - DNA, Protein, NYVAC, ALVAC, adjuvants
The Strategy for the ALVAC/Protein Phase 3 program

- Construction of ALVAC-HIV-C (vCP2438)
- Construction of Bivalent Subtype C gp120/MF59
- Booster at 12 months

Optimize regimen by increasing potency & durability
Study Schema: HVTN 100

<table>
<thead>
<tr>
<th>N (total 252)</th>
<th>Primary Vaccine Regimen</th>
<th>Booster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Month 0</td>
<td>Month 1</td>
</tr>
<tr>
<td>210</td>
<td>ALVAC-HIV (vCP2438)</td>
<td>ALVAC-HIV (vCP2438)</td>
</tr>
<tr>
<td>42</td>
<td>Placebo</td>
<td>Placebo</td>
</tr>
</tbody>
</table>

Products:
- ALVAC-HIV (vCP2438) expressing HIV-1 env (clade C gp120), clade B (gp41), gag (clade B) & protease (clade B) (Dose: >1 X 10^6 CCID₅₀)
- Bivalent subtype C gp120/MF59 containing 100mcg TV1.Cgp120 & 100mcg 1086.Cgp120

Immunogenicity evaluation to be applied to this study to inform advancement into phase 3
Scientific Objectives of Phase 1/2 testing in HVTN 100

• To demonstrate immune responses to the clade C vaccine are comparable to that in RV144 vaccine and sufficient to extend results of RV144

• To determine if levels of V1V2 antibody responses to clade C vaccine will enable testing of the V1V2 hypothesis as a vaccine Correlate of Protection (CoP)
“Go” criteria

• Adequate overall clade C vaccine response rate
 • Env Ab binding response rate to vaccine insert

• Clade C vaccine immune effectors not inferior to those from RV144 in terms of:
 • Ab binding magnitude to env vaccine insert HIV strains
 • CD4 T cell ICS response rate to Env PTE peptides

• The V1V2 binding antibody response rate will be sufficient to test if the RV144 Correlate of Risk is a clade C vaccine-induced Correlate of Protection
Study Schema: HVTN 702

Primary Vaccine Regimen

<table>
<thead>
<tr>
<th>Month 0</th>
<th>Month 1</th>
<th>Month 3</th>
<th>Month 6</th>
<th>Month 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALVAC-HIV (vCP2438)</td>
<td>ALVAC-HIV (vCP2438)</td>
<td>ALVAC-HIV+ Bivalent Subtype C gp120/ MF59®</td>
<td>ALVAC-HIV+ Bivalent Subtype C gp120/ MF59®</td>
<td>ALVAC-HIV+ Bivalent Subtype C gp120/ MF59®</td>
</tr>
<tr>
<td>Placebo</td>
<td>Placebo</td>
<td>Placebo + Placebo</td>
<td>Placebo + Placebo</td>
<td>Placebo + Placebo</td>
</tr>
</tbody>
</table>

Estimated Total Study duration 72 months:

- Stage 1: 60 months-18 months for enrolment, 24 months of follow-up for HIV-1 uninfected individuals, 18 months follow-up for HIV-1 infected individuals
- Stage 2: an additional 12 months of follow-up for uninfected individuals
Overall Strategy for Correlates Discovery

- Conduct a series of harmonized Phase 1 trials of priming and boosting regimens
 - Select regimens that are:
 - most likely to reduce HIV acquisition
 - most diverse to move forward to Phase 2b
 - Select up to three regimens to discover correlates of protection
A Matrix of Prime/Boosts

- **Phase 1-2a trials (2015)**
 - Prime-boost vaccine regimen similar to that used in RV144 adjusted to target Clade C
 - Multiple vaccine candidates

<table>
<thead>
<tr>
<th>Prime-Boost Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimen</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Env Dose and Adjuvant Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
</tr>
<tr>
<td>i</td>
</tr>
<tr>
<td>ii</td>
</tr>
<tr>
<td>iii</td>
</tr>
</tbody>
</table>
Strategy for the Correlates Program

- Construction of DNA
- Construction of ALVAC-HIV-C
- Construction of NYVAC
- Formulation of bivalent Clade C gp 120/MF59
- Formulation of bivalent Clade C gp 120/alum
- Formulation of bivalent Clade C gp 120/AS01B
- Booster at 12 months

Increase potency, durability & diversity
Candidate Vaccine Products

<table>
<thead>
<tr>
<th>VACCINE</th>
<th>PRODUCT DESCRIPTION</th>
<th>DEVELOPER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALVAC-C</td>
<td>Expressing ZM96 gp120 (clade C strain) linked to gp41, and gag and pro (clade B LAI strain).</td>
<td>Sanofi Pasteur</td>
</tr>
<tr>
<td>NYVAC-C</td>
<td>Bivalent highly attenuated vaccinia virus expressing clade C ZM96 gp140 and ZM96 Gag-CN54 Pol-Nef fusion proteins</td>
<td>Sanofi Pasteur</td>
</tr>
<tr>
<td>Gp120 protein + MF59</td>
<td>Clade C TV1 gp120 Env and clade C 1086 gp120 Env with MF59 adjuvant</td>
<td>Novartis Vaccines</td>
</tr>
<tr>
<td>Gp120 protein + ASO1B</td>
<td>Clade C TV1 gp120 Env and clade C 1086 gp120 Env with ASO1B adjuvant</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>DNA-C</td>
<td>Trivalent DNA expressing clade C ZM96 Gag and gp140, and a CN54 Pol-Nef fusion construct. This DNA product produces virus like particles and trimeric configurations of gp140</td>
<td>IPPOX Foundation</td>
</tr>
</tbody>
</table>
How are the trials going to identify a CoR/CoP for HIV vaccines?

- **The Correlates Program focus**
 - Next-generation clade C-adapted vaccines
 - Potent priming immunogens and adjuvants eliciting unique immunological responses

- **Phase 2b trial**
 - Does not qualify vaccines for licensure
 - Advances the field by expanding knowledge of factors contributing to HIV vaccine protective efficacy

- **The Design**
 - Efficiently evaluate vaccine safety and efficacy
 - Validate previously identified immune correlates of risk (CoR)
 - Identify additional CoR/CoP
Potent Priming Immunogens Elicit Distinct Immunological Profiles

- NYVAC+protein
 - Potent Ab responses
- DNA/NYVAC+protein
 - Potent T-cell responses
- DNA-protein
 - Induction of novel priming for potent Ab and T-cell boost responses
- Coadministration of ALVAC and gp120 from baseline
 - Modulation of IgA responses
Potent Adjuvants with a Track Record

- **MF59** = Squalene + Polysorbate 80 + Sorbitan Trioleate
 - An oil-in-water emulsion, squalene internal oil phase and a external aqueous phase. The two non-ionic surfactants serve to stabilize the emulsion
 - Increased vaccine potency and efficacy (Hep B, flu)
 - Antigen sparing
 - Expands Ab repertoire

- **AS01B** = liposome of MPL + QS21
 - Monophosphoryl Lipid A (MPL) is a preparation derived from *Salmonella minnesota*, R595.
 - a TLR4 agonist already used in vaccines for Hep B and HPV (AS04)
 - QS21 is a purified extract derived from the Soap bark tree; contains water-soluble triterpene glucoside compounds (saponins).
 - Improved vaccine efficacy with malaria vaccine RTS,S
 - Reported effects include expansion of the Ab repertoire
2-Step Down Selection Process

Start with M HIV Vaccine Regimens

Step 1: Screening based on:
• Safety
• Adequate immune responses based on a core set of immune assays: Month 6.5 samples

Screening Succeeded

STOP: Vaccine regimen removed

Screening Failed

Step 2: Selection based on immune responses from a full set of immune assays: Month 6.5, 12 samples
• Select regimens with unique and best-ranked immune responses

Compare each regimen to the ALVAC-gp120 C/C in MF59 regimen being tested in the Phase 3 program

Screening Succeeded

For remaining regimens, determine the unique and ‘best’ regimens to select

STOP: Vaccine regimen removed

Screening Failed

Peter Gilbert
Step 1 of the Down Selection

- Each vaccine regimen must have positive safety data and sufficient immune response rates and levels, as summarized in the following table

<table>
<thead>
<tr>
<th>Required Immune Response Benchmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
</tr>
<tr>
<td>2/3 required</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Step 2 of the Down Selection

- Two sets of immune responses will form the basis for the down selection:
 - A set based on published correlates of vaccine efficacy to prevent HIV infection in the RV144 Thai trial
 - An inclusive set that the HIV vaccine field hypothesizes are relevant for achieving prevention of HIV infection
- The HVTN statistical group develops statistical methods for guiding the down selection decision based on the multivariate immune response data
- Computer simulation studies are used to fine-tune the statistical methods to achieve an appropriate balance of:
 - high probability of selecting promising and distinctive vaccine regimens
 - low probability of selecting poor or redundant vaccine regimens
The Down-Selection Approach Will be Refined Up Until the Phase I Trial Data Analysis

- Statistical methods for analyzing immune response data are developed and validated on additional HVTN vaccine trial data sets over time
- Laboratory immune assays are developed and refined
 - e.g. panels of HIV Envelope reagents for measuring immune responses are developed and refined
- New knowledge accrues about immune correlates of vaccine efficacy in the:
 - RV144 Thai trial
 - non-human primate challenge trials

The down selection approach will be revised over time based on broad discussion with stakeholders in the HIV vaccine field

Peter Gilbert
Timeline for P5 Correlates Program

HVTN 113 Phase 1/2a
DNA/ALVAC+bivalent gp120 AS01b/MF59

HVTN 108 Phase 1/2a
DNA+bivalent gp120 AS01b/MF59

HVTN 109 Phase 1/2a
DNA/NYVAC+bivalent gp120 AS01b/MF59

HVTN 701 Phase 2b
Up to 3 active arms

REGIMEN SELECTION

REGULATORY REVIEW

ENROLLMENT

FOLLOW-UP

PROTOCOL DEVELOPMENT

PRIMARY IMMUNOGENICITY REPORT

HVTN Site Expansion Necessary to Support Upcoming Studies

- Total of 12 sites being developed in Southern Africa
 - Malawi
 - Mozambique
 - Zambia
 - Zimbabwe
 - Tanzania
 - South Africa
Acknowledgments

• BMGF
• DAIDS/NIAID
• EuroVacc
• FHCRC (HVTN)
• GSK

• IPPOX
• Military HIV Research Program
• Novartis
• RSA-MRC
• Sanofi Pasteur

Study Participants and Site Staff
THANK YOU!

HIV VACCINE
TRIALS NETWORK